Как устроен однопроводный интерфейс 1-Wire

1-Wire — однопроводный низкоскоростной интерфейс, разработанный фирмой Dallas Semiconductor (сейчас она является подразделением фирмы MAXIM) для двунаправленного обмена данными с различными периферийными устройствами (датчики температуры, электронные ключи, аккумуляторы).

Это довольно дешёвый и надёжный интерфейс, для устройств, не требующих быстрого обмена большим количеством данных. Он позволяет обмениваться данными на скорости до 15,4 кбит/с в обычном режиме и до 125 кбит/с в режиме «overdrive» (в статье мы будем рассматривать обычный режим). При использовании специальных проводов (IEEE1394 — Firewire) расстояние передачи данных может составлять до 300 м.

Устройство и подключение 1-wire

Как физически устроен сам интерфейс? Да очень просто, — смотрим рисунок слева. В микрухах реализованы порты 1-wire, которые состоят из высокоомного приёмника и передатчика на полевом транзисторе с открытым стоком, подключенные к одному общему выводу (вывод порта 1-wire). Типовой ток утечки закрытого выходного полевика составляет 5 мкА. Снаружи реализована шина 1-wire. Она состоит из одного сигнального провода (поэтому интерфейс и назван однопроводным), подтянутого через резистор (типовое значение 5,1 кОм) к питанию (к плюсу) и одного провода, подключенного к общему проводу (то есть к минусу).

Обмен данными осуществляется по принципу Master-Slave (ведущий-ведомый), соответственно устройства с интерфейсом 1-wire бывают двух типов: «Master» (ведущее устройство) и «Slave» (ведомое устройство). Как правило в качестве «Мастера» выступает контроллер (или компьютер, через специальное устройство сопряжения), а в качестве «Слэйвов» — различные периферийные устройства.

На одну шину 1-wire можно подключить множество (до 248) slave-устройств, поскольку каждое такое устройство имеет уникальный 48-битный серийный номер, который вместе с байтом «CRC» и байтом «family code» (определяющим тип устройства) образует уникальную 64-битную метку. Ведущий на шине 1-wire должен быть один.

Питаться устройства с интерфейсом 1-wire могут как от независимого источника, так и от сигнального провода. Если в устройствах используется КМОП-архитектура, то диапазон напряжений питания может быть довольно широкий, но, при подключении на одну шину, питание всех устройств должно быть примерно одинаковым (чтобы уровни напряжения правильно распознавались приёмниками). В основном используются TTL-уровни (соответственно, пятивольтовое питание). Ещё хотелось бы добавить, что выход, реализованный на полевике с низким током утечки, — это специальная заточка под питание от сигнальной линии. Если у вашего устройства будет внешнее питание — никто не мешает вам организовать порт 1-wire, например, на биполярном транзисторе с открытым коллектором. Аналогично, резистор 5,1 кОм — тоже не догма, его значение может варьироваться в зависимости, например, от ёмкости линии.

Теперь давайте подробнее расмотрим механизм передачи данных на уровне протокола.

Во первых, необходимо отметить, что всем обменом на шине управляет «Мастер». Только мастер решает — когда и с каким устройством он хочет поговорить и когда устройство должно посылать или принимать очередной бит. «Слэйвы» синхронизируются с «Мастером» по спаду на сигнальной линии и далее отсчитывают интервалы до тех или иных своих действий по внутреннему счётчику. Единственное самостоятельное действие, разрешённое «Слэйву» — это выдача сигнала «Presence» (импульс присутствия), который он выдаёт сразу после подключения на шину, чтобы обозначить своё присутствие. Кроме этого, «Мастер» может сформировать на шине сигнал «Ресет», после которого все «Слэйвы» на шине должны ресетнуться и также ответить «Мастеру» сигналом «Presence».

Диаграммы сигналов Reset и Presence на шине 1-wire

Диаграммы сигналов «Reset» и «Presence» приведены на рисунке слева. Синим цветом обозначено состояние активности «Мастера» (когда он притягивает уровень на шине к нулю), красным цветом обозначено состояние активности «Слэйва» (когда «Слэйв» притягивает уровень на шине к нулю), серым цветом обозначено состояние, когда «Мастер» и «Слэйв» неактивны (сигнал через резистор подтянут к питанию).

Чтобы всё было понятно — опишем то, что нарисовано на этом рисунке, словами. Итак, чтобы сформировать сигнал «Reset», — «Мастер» должен притянуть уровень на шине к нулю на время не менее 480 мкс и не более 960 мкс (480 мкс ≤ TRSTL < 960 мкс). После этого он должен отпустить шину и, не менее, чем на 480 мкс, прекратить свою активность на шине (TRSTH > 480 мкс). «Слэйвы», не ранее, чем через 15 мкс, но и не позднее, чем через 60 мкс после того, как «Мастер» отпустит шину (15 мкс < TPDH < 60 мкс), должны сформировать на шине низкий уровень (это и есть сигнал присутствия), длительностью от 60 до 240 мкс (60 мкс < TPDL < 240 мкс), после чего они также отпускают шину.

После того как «Мастер», получив сигнал «Presence», понял, что на шине есть «Слэйвы» — он может начинать с этими «Слэйвами» обмен данными. Данные по шине передаются побитово, младшим битом вперёд. 0 и 1 кодируются уровнями напряжения на сигнальном проводе (0 — низкий уровень напряжения, 1 — высокий уровень напряжения).

Каждый бит передаётся в установленном временном промежутке, называемом тайм-слотом. Начало каждого тайм-слота (как я уже говорил) определяет «Мастер», притягивая шину к низкому уровню. Время между тайм-слотами не регламентировано, то есть один бит можно передать, условно говоря, сейчас, а другой, скажем, через 5 минут, ничего страшного при этом не произойдёт и данные не потеряются.

Выборка данных «Слэйвом» и «Мастером» происходит в разные временные интервалы, относительно начала тайм-слота, поэтому мы отдельно рассмотрим варианты передачи данных в направлениях «Мастер» ⇒ «Слэйв» (тайм-слот записи) и «Слэйв» ⇒ «Мастер» (тайм-слот чтения).

Тайм-слот записи на шине 1-wire

Тайм-слот записи показан на рисунке слева. Как и ранее, синим цветом обозначена активность «Мастера», красным — активность «Слэйва» и серым — моменты, когда линия подтянута к питанию через резистор.

  1. 1 мкс≤TLOW1<15 мкс — время, в течении которого шина притянута к нулю при передаче 1
  2. 60 мкс≤TLOW0<TSLOT — время, в течении которого шина притянута к нулю при передаче 0
  3. 60 мкс≤TSLOT<120 мкс — длительность тайм-слота
  4. TREC>1 мкс — интервал между тайм-слотами

Поясню этот рисунок несколько подробнее. Итак, для того, чтобы «Слэйв» распознал начало тайм-слота — «Мастер» должен удерживать сигнал на шине равным нулю в течении времени TLOW1. После этого, но не позднее 15 мкс от начала тайм слота, «Мастер» должен установить на шине уровень сигнала, соответствующий передаваемому биту. То есть, если он хочет передать 1, то он должен отпустить шину через какой-то промежуток времени от начала тайм-слота, чтобы до начала «Окна выборки» сигнал успел установиться в единицу. Если же «Мастер» хочет передать ноль, то он просто должен так и оставить линию притянутой к нулю. В течении «Окна выборки» сигнал на линии не должен меняться, потому что в любой момент в течении этого времени сигнал может быть считан «Слэйвом». «Окно выборки» заканчивается через 60 мкс от начала тайм-слота. После окончания окна выборки и до окончания тайм-слота — «Мастер» должен отпустить шину, чтобы сигнал вернулся к высокому уровню. Понятно, что отпускать шину актуально только в том случае, если «Мастер» передавал 0, если же он передавал 1, то ему нужно просто дождаться окончания тайм-слота.

Тайм-слот чтения на шине 1-wire

Тайм-слот чтения показан на рисунке справа.

  1. 1 мкс≤TLOWR<15мкс — время, в течении которого шина притянута к нулю
  2. TRDV=15 мкс — момент окончания «Окна выборки»
  3. 0 мкс≤TRELEASE<45 мкс — время, в течении которого «Слэйв» должен отпустить шину
  4. 60 мкс≤TSLOT<120 мкс — длительность тайм-слота
  5. TREC>1 мкс — интервал между тайм-слотами

Здесь всё происходит следующим образом: «Мастер» притягивает шину к нулю, чтобы обозначить начало тайм-слота. Пока линия притянута к нулю — «Слэйв» должен либо тоже притянуть линию к нулю, если хочет передать ноль, либо оставить линию свободной, если хочет передать единицу. После того, как «Мастер» отпустит шину (через время TLOWR), — начинается «Окно выборки» и «Мастер» может считывать с шины значение бита. Далее, после окончания «Окна выборки», «Слэйв» должен в течении времени TRELEASE отпустить шину.

Хотелось бы уточнить, что «Мастер» должен не сразу читать уровень на шине после того, как отпустит её, а через некоторое время, которое необходимо для того, чтобы исключить влияние ёмкости линии (если «Слэйв» передаёт 1, то, из-за наличия этой ёмкости, напряжение не может вырасти мгновенно после отпускания шины «Мастером»). С учётом этого, «Мастеру» наиболее целесообразно сделать промежуток, в течении которого он удерживает шину на низком уровне, как можно короче (чтобы увеличить себе окно выборки), а читать данные с шины как можно ближе к концу «окна выборки» (таким образом можно будет работать с линиями, имеющими бОльшую ёмкость).

В самих устройствах, отдельные передаваемые биты собираются в команды, данные и так далее, но это уже более высокий уровень протокола, который мы здесь рассматривать не будем, поскольку он в разных устройствах может быть разным (соответственно и смотреть его надо в даташите на конкретный девайс).

Вот и вся теория. Ниже даны ссылки на различные алгоритмы и самопальные девайсы с интерфейсом 1-wire (пока не все, но скоро будут все):

  1. Программная реализация 1-wire Master для AVR
  2. Эмуляция электронного ключа 1-wire на ATTiny2313
  3. Поиск устройств на шине 1-wire
  4. Шлюз «RS232<--->1-wire» на микроконтроллере ATTiny2313 (режим Master)

Добавить комментарий