Бестрансформаторный блок питания с конденсаторным делителем

+ online-калькулятор

Итак, начнём, с того, зачем вообще нужен такой блок питания. А нужен он затем, что позволяет запитать слаботочные нагрузки не заморачиваясь с намоткой трансформаторов и используя минимум компонентов. Минимальное число компонентов (и тем более отсутствие таких габаритных компонентов как трансформатор), в свою очередь, делают блок питания с конденсаторным делителем (иногда говорят "с емкостным делителем") простым и исключительно компактным.

Конденсаторный делитель

Рассмотрим схему, изображённую на рисунке:

Здесь Z1 = -j/wC1; Z2 = -j/wC2 - реактивные сопротивления конденсаторов

Найдём ток нагрузки: iн = i1-i2 (1) - первый закон Кирхгофа для узла 1.

Учитывая, что по закону Ома для участка цепи: i1=u1/Z1, а u1=uc-u2 ;

выражение (1) можно переписать в следующем виде:

iн=(uc-u2)/Z1-u2/Z2 ;

или по другому: Iн=jwC1(Uсм-U)-jwC2U , где индекс "м" - это сокращение от слова максимальный, он говорит о том, что речь идёт об амплитудных значениях.

Раскрыв скобки и сгруппировав это выражение, получим:

Iн=jwC1(Uсм-U(121)) (2) - вот, собственно, мы и получили выражение для тока через нагрузку Zн, в зависимости от напряжения на этой нагрузке и напряжения питающей сети. Из формулы (2) следует, что амплитудное значение тока равно: Iнм=wC1(Uсм-U(121)) (3)

схема бестрансформаторного блока питания

Предположим, что наша нагрузка - это мост, сглаживающий конденсатор и, собственно, полезная нагрузка (смотрим рисунок).

При начальном включении, когда конденсатор C3 разряжен, величина U2 будет равна нулю и через мост потечёт пусковой зарядный ток, максимальное начальное значение которого можно найти, подставив в формулу (3) величину U равную нулю (Iпуск=wC1Ucм). Это значение соответствует худшему случаю, когда в момент включения мгновенное значение напряжения в сети было равно максимальному значению.

С каждым полупериодом конденсатор C3 будет заряжаться и наше напряжение U, равное по модулю напряжению на конденсаторе C3 и напряжению на полезной нагрузке (обозначим его как Uвых), также будет расти, пока не вырастет до некоторого постоянного значения. При этом ток через полезную нагрузку будет равен средневыпрямленному току, т.е. Iвых=Iнм*2/"Пи" (для синусоидального входного тока).

Учитывая также, что Ucм=Uc*1,414 (Uc - действующее значение питающего напряжения), а w=2*"Пи"*f, где f-частота питающего напряжения в герцах, получим:

Iвых = 4fC1(1,414Uc-Uвых(1+C2/C1)), если ещё к тому же учесть падение на диодах моста, то окончательно получится:

Iвых = 4fC1(1,414Uc-(Uвых+2Uд)(1+C2/C1)) (4) , где - падение на одном диоде

Из этого выражения можно получить и обратную зависимость Uвых(Iвых):

Uвых=(1,414Uc-Iвых/4fC1)/(1+C2/C1)-2 (5)

Что видно из двух последних формул? Из них видно, что с увеличением потребляемого нагрузкой тока напряжение на нагрузке уменьшается, а с уменьшением потребляемого тока - оно растёт. Разомкнув цепь нагрузки (то есть приняв ток нагрузки равным нулю) найдём напряжение холостого хода: Uвых хх = 1,414Uc/(1+C2/C1)-2 (6). Очевидно, что мост и конденсатор C2 должны быть рассчитаны на напряжение не менее U2м макс = Uвых хх + 2Uд = 1,414Uc/(1+C2/C1).

Строго говоря наши расчёты не совсем безупречны, потому что реальные процессы тут вообще будут нелинейными, но наши небольшие упрощения сильно облегчают расчеты и не сильно влияют на конечный результат.

Схема бестрансформаторного блока питания с конденсаторным делителем

А вот теперь самое интересное. Частенько читал в интернете, что линейные стабилизаторы не работают в таких схемах, сгорают и прочее и прочее. Ну что же, давайте ещё раз перерисуем нашу схему, добавив в неё линейный стабилизатор напряжения (смотрите рисунок).

(Uст. , - напряжение и ток нагрузки).

Здесь наше Uвых (напряжение на конденсаторе C3) является входным напряжением стабилизатора (Uin). Как мы помним, при отсутствии нагрузки напряжение на выходе будет максимально и равно Uвых хх. Так что вполне очевидно, что для нормальной работы наш линейный стабилизатор должен выдерживать входное напряжение не менее Uвых хх. Или можно сказать по другому, - конденсаторы должны быть подобраны таким образом, чтобы выходное напряжение холостого хода (имеется ввиду выходное напряжение конденсаторного делителя) не спалило стабилизатор при случайном отключении нагрузки (мало ли, неконтакт какой-нибудь).

Максимальный ток нагрузки можно определить, подставив в формулу (4) вместо Uвых минимальное входное напряжение стабилизатора. Как видите, главное - всё правильно рассчитать, тогда и стабилизатору ничто не угрожает.

Эта схема уже вполне рабочая, но есть у неё один существенный недостаток. В случае, когда нам нужно получить входное напряжение стабилизатора существенно ниже питающего напряжения сети (при питании от 220 В нам именно это и нужно), ёмкость конденсатора C2 получается довольно значительной. А неполярный конденсатор значительной ёмкости - довольно дорогое удовольствие (да и габариты не радуют). Можно ли как-то вместо неполярного конденсатора использовать, например, обычные электролитические?

Схема бестрансформаторного блока питания с конденсаторным делителем

Оказывается можно. Для этого переделаем нашу схему ещё раз, таким образом, как на рисунке. В данной схеме вместо одного конденсатора С2 используются два конденсатора С2 и С2' (такой же ёмкости, как и в случае, когда конденсатор C2 всего один), развязанные через диоды моста. При этом обратное напряжение на каждом из этих конденсаторов не превышает падения напряжения на диоде.

Несмотря на то, что в данном случае вместо одного неполярного конденсатора используется два электролитических, такая схема получается экономичнее и по деньгам и по габаритам.

Правда тут есть один нюанс. Выгорание одного из диодов моста может привести к тому, что на электролитических конденсаторах всё-таки появится полное обратное напряжение. Если такое произойдёт - конденсатор вероятнее всего взорвётся.

Ещё хотелось бы отметить, что обращаться с бестранформаторными блоками питания следует крайне осторожно, поскольку такая схема не развязана от питающей сети и прикосновение к её токопроводящим частям может вызвать серьёзное поражение электрическим током.

Online-калькулятор для расчёта блока питания с конденсаторным делителем:

(для правильности расчётов используйте в качестве десятичной точки точку, а не запятую)

1) Исходные данные:

(если вы не знаете минимального входного напряжения стабилизатора и величину падения напряжения на диодах моста, то расчёт будет сделан для: Uin=Uст и Uд=0, - как будто минимальное входное напряжение равно выходному напряжению стабилизатора и диоды идеальные).

C1=мкФ;  С2=мкФ;  Uд=В - падение напряжения на одном диоде моста

Uст=В - выходное напряжение стабилизатора

Uin min=В - минимальное входное напряжение стабилизатора

Uc=В;  f=Гц - напряжение и частота питающей сети 

2) Расчётные данные:

Iн max=мА - максимальный ток нагрузки

Iпуск=мА - максимальный начальный пусковой зарядный ток

U2xx=В - максимальное напряжение на конденсаторах C2, C2' и мосту

Uin xx=В - максимальное напряжение на входе стабилизатора

Для примера: при C1=1мкФ, С2 (или С2 и С2')=22мкФ, Uc=220В, f=50Гц и стабилизаторе LM7805, - можно получить максимальный ток нагрузки порядка 30-35мА, что вполне позволяет запитывать, например, контроллеры, оптосимисторы и даже некоторые релюшки. При этом напряжение на LM-ке даже в худшем случае (без нагрузки) не превысит 13,5 вольт.

Пример использования (в устройстве управления освещением)

radiohlam.ruтеорияпитание

Понравилась статья? Поделись с друзьями!

Обсудить эту статью на форуме

 
Rambler's Top100 © 2009 - Материалы сайта охраняются законом об авторском праве