Наш канал в telegram

Измеритель ЭПС конденсаторов

Так как по натуре своей я радиохламер, появилась необходимость иметь ЭПС-метр — измеритель эквивалентного последовательного сопротивления, известного так же как ESR.

Если коротко, то ЭПС конденсатора — очень капризная величина, зависящая от частоты протекающего через конденсатор переменного тока. Чаще всего измерять ЭПС нужно на переменном токе синусоидальной формы частотой 50 – 60 кГц.

В сети перебрал кучу схем, от простых до сложных. Остановился на конструкции, в которой используется микросхема К157ДА1. Достоинствами этой схемы были: линейная шкала индикатора, отсчёт слева направо и отсутствие необходимости переделки шкалы.

Напрягало то, что К157ДА1 – двухканальная, а в выбранной мной конструкции вторая половина этой микросхемы не задействована. Поэтому от оригинальной схемы пришлось отступить. В журнале «Радио» за 1992г. №7 была опубликована схема генератора синусоидальных колебаний как раз на микросхеме К157ДА1.

Вот такая в итоге получилась схема:

схема esr-метра на К157ДА1

Эта схема позволяет измерять ЭПС конденсатора на двух поддиапазонах: 1Ом и 10 Ом (конечное значение) без выпаивания из схемы. Конденсаторы с более высоким значением ЭПС являются дефектными.

Как работает схема

На DA1.2 выполнен генератор синусоидальных колебаний частотой 50-60кгц (у меня получилось 57кгц). С выхода генератора сигнал поступает на транзистор VT2, который служит для согласования входных – выходных сопротивлений последующих каскадов. Резистор R12 ограничивает выходной ток.

Т.к. величина R12 значительно превышает сопротивление испытуемого конденсатора, то проходящий через него ток можно считать неизменным и определяемым только сопротивлением резистора R12. Падение напряжения на испытуемом конденсаторе будет прямо пропорционально внутреннему сопротивлению. Поэтому шкала прибора будет линейна.

Резисторы R13, R14 и диоды VD1 – VD4 образуют цепь разряда испытуемого конденсатора (если он не разряжен), а также ограничивают выходной сигнал при разомкнутых щупах. На транзисторе VT3 выполнен усилитель, на VT4 – буферный каскад.

На DA1.1 выполнен милливольтметр переменного тока, постоянное выходное напряжение которого пропорционально измеряемому переменному напряжению.

Особенность этого измерителя в том, что при отсутствии измеряемого конденсатора, к стрелочному индикатору (микроамперметру) приложено максимальное выходное напряжение (правда, ограниченное диодами VD1 – VD4). Это вызывает большую перегрузку микроамперметра и может привести к выходу его из строя. Для исключения такой перегрузки введена цепь защиты.

На VT5 выполнен пиковый индикатор, а VT6, VT7 образуют цепь защиты стрелочного индикатора.

Цепь защиты работает следующим образом. Когда величина выходного напряжения милливольтметра превысит допустимый уровень (такой, что величина падения напряжения на R30 превысит где-то 0,6 Вольт), транзисторы открываются, и выходное напряжение на стрелочном индикаторе уменьшается скачкообразно до некоторой величины. При дальнейшем увеличении напряжения оно уменьшается до нуля. Такая особенность защиты может ввести в заблуждение, т.к. если величина ЭПС предположим 15 Ом, то на индикаторе может отобразиться, например, 5 Ом. Чтобы этой путаницы избежать введён пиковый индикатор. Если ЭПС конденсатора больше 1 или 10 Ом (в зависимости от выбранного диапазона) — загорается светодиод VD5. Так, при разомкнутых щупах индикатор показывает 0, но горит светодиод, показывая перегрузку. А при замкнутых щупах на индикаторе тоже 0, только светодиод не горит, показывая, что сопротивление действительно равно нулю.

Конструкция и детали

Микросхема включена по питанию в однополярном варианте. Резисторы R1, R2, R24, R25 образуют искусственную среднюю точку. Конденсаторы С1 и С11 уменьшают уровень пульсаций. Если питающий стабилизатор хороший, то их можно не ставить. Резисторы R3, R5 и конденсаторы С2, С4 образуют мост Вина (частотозадающая цепь). Транзистор VT1 используется как регулируемое сопротивление, применил рекомендованный автором. Транзисторы VT2 и VT4 установил какие были под рукой. Транзисторы VT3 и VT5 — с большим h21э. Узел защиты с транзисторами VT6 и VT7, решил выполнить отдельно, чтобы упростить печатную плату. Номиналы переходных конденсаторов не критичны. Можно использовать от 0.1 до 0.01мкф. Если ошибиться с полярностью конденсатора С3, то схема работать не будет. Если прибор будет использоваться для проверки не разряженных конденсаторов (в схеме), то диоды VD1 – VD4 должны выдерживать прямой ток до 1 А. Микроамперметр может быть применён на ток 100 мкА, но это значение не критично. В своём варианте я применил микроамперметр от магнитофона (на 300 мкА). Корпус использовал от приставки – селектора каналов дециметрового диапазона. С платы этой приставки удалил все детали кроме выключателя сети, светодиода и переключателя 2ПК, который использовал для переключения предела измерения. На этой же плате смонтировал схему питания, установил стрелочный индикатор и плату прибора. В качестве индикатора предела измерения использовал два светодиодных индикатора АЛ304Г.

схема соединений, вид со стороны деталей

Налаживание прибора

Движок R10 установливаем в нижнее по схеме положение. Временно отключаем стрелочный индикатор. Вместо R3 и R5 впаиваем сдвоенный переменный резистор. Подаём питание, наблюдаем по осциллографу форму и частоту генерируемых колебаний. Сдвоенным резистором устанавливаем частоту несколько ниже номинальной. Т.к. конденсаторы С2 и С4 имеют разброс по ёмкости, возникает необходимость балансировки моста Вина. Для этого к одному из сдвоенных резисторов добавляем ещё один переменный резистор. И манипулируя им, добиваемся наименьших искажений и максимальной амплитуды. При этом контролируем численное значение частоты генерируемых колебаний. Чтобы получить правильную синусоиду, требуется дополнительная регулировка резисторов R4, R6 и R10.

Далее, — к разъёму Сх подпаиваем резистор 10 Ом (он будет эталоном второго поддиапазона). Изменяя R12, добиваемся величины падения напряжения меньше 100 мВ на эталонном резисторе.

Настраиваем милливольтметр. Вместо R29 и R30 впаиваем подстроечные резисторы, к R30 подключаем авометр в режиме измерения тока на 1 – 10ма. Изменяя R29, добиваемся показаний авометра кратных штатному стрелочному индикатору. То же самое можно проделать подбором R22 , изменяя чувствительность микросхемы. Подпаиваем штатный стрелочный индикатор и проводим окончательную регулировку, устанавливаем стрелку на последнее деление шкалы.

Настраиваем узел защиты. К разъёму Сх подпаиваем переменный резистор 20 ом. Движок этого резистора устанавливаем в положение минимального сопротивления. Плавно увеличивая сопротивление, переводим стрелку стрелочного индикатора максимально за пределы шкалы. Изменяя R30, добиваемся скачкообразного уменьшения показаний прибора. Снова на разъёме Сх устанавливаем сопротивление 10 Ом. Проверяем отклонение стрелки индикатора на конечное деление шкалы. Если показание не соответствует этому, снова проводим регулировку. Манипулируя R29 и R30, добиваемся правильных показаний стрелочного индикатора. Далее вместо подстроечных впаиваем постоянные резисторы. На разъёме Сх устанавливаем сопротивление 1 Ом. Резистором R26 добиваемся отклонения стрелки индикатора на конечное деление шкалы.

Настраиваем пиковый индикатор. На разъёме Сх устанавливаем сопротивление чуть больше 10 Ом. Изменяя величину R28, добиваемся зажигания светодиода.

На этом регулировка прибора заканчивается.

В своём варианте я использовал стрелочный индикатор от магнитофона, у которого два сектора: зелёный и красный. Для меня не важно численное значение ЭПС конденсатора, главное – годен или нет. Такое изображение шкалы значительно упрощает настройку системы защиты. Т.к. конец зелёного сектора это не конец всей шкалы и как следствие меньше перегружается стрелочный индикатор.

Узел защиты выполнен на отдельной плате и подпаян к стрелочному индикатору. Разъём Сх я использовал от старых телевизоров на семь штырьков, — 3 чёрных и 4 белых. Это позволяет проверять конденсаторы без щупов. Разъём с платой соединён коротким одножильным проводом диаметром 1мм.

схема питания

Схема питания (рисунок слева). Если не использовать светодиодные индикаторы АЛ304Г, то часть схемы на транзисторах можно исключить.

печатная плата измерителя ЭПС

Кликните, чтобы посмотреть фото собранного прибора

внешний вид ЭПС-метра
внешний вид ЭПС-метра

[свернуть]

Добавить комментарий